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Abstract
This paper introduces a treHis.  coded modulation (TCM)

scheme for  non-coherent  multl le full response M-ary
rCPFSK with rnodulatlon ~ndex  1. M. A proper branch. met-

ric for the trelhs decoder 1s obtained b employm  a simple
?5ap roxlrnatlon of the modifi,ed  Bessel  unction .f?r arge slg-

Fna to noise ratio (SNR). Palrwlse  error yrobabdlty  of coded
sequences js evaluated by, applying a hnear approximation
to the Rlc~an random variable. Examples are reseqted  for
trell:s codln~s  of non-coherent binary CPFSK %y qsmg the
Ungerboeck  s set partitioning method. Asym totlc upper

/’ gjvenbounds on blt error probab~llty  are evaluated or the
coded systems, and simulation results are also presente .

1 Introduction
Trellis Coded Modulation (TCM)  [1] is developed to obtain

%~~~~CM [2], [3] and Mult,ple TCM [4] are developed for
ain without increasing bandwidth. Also multldlmen-

power and bandwidth efficiency. These -schemes  are ori i-
nall . developed for a coherent .modulatlon system. T&l
a ficat~on to multlple symbol  ddferent~al  phase sh~ft  keying
(&!DPS1</ can be found in [5], The paper [6] considers the
rnultlple u1l res onse continuous hqse frequency shift ke -

EIn with non-co erent detection. ;hls pa er mt.reduces t{e
e$ivalent normalized squared distance (&SD).  The ENSD
o non-coherent systqn  plays  the same role w the normalized
squared Euclldean dy$ance  of coherent system for evaluating
the blt error probabdlty.

We show that a combination of a trellis encoder and a non-
coherent N-consecutive M-ary CPFSK  can potentially ield

Ya significant improvement in performance,. even for sma. 1 N,
over the ungoded  s stern., For the analysls we use a hnear

iapproxlmat:on  for t e .Qlclan random varlabie to evaluate the
palrwlspcerror  probablhty. We show that the alrwlse  errcm
probabdlty  of coded se uen~es  can be expresae$ss afunct.ion
of the sum of ~NSDs.%e  introduce the equ~valent  squared
free distance, d.,lree, (which represent the smallest distance
between coded sequences leaving from the same trellis state
at a given time and remerging again later on). d: !,.. 1s a
designin  tool for the trellis encoder with a non-cohdrent  sys-

ftern as t ~e Euclldean  sauared free distance 1s for a coherent.
systcm. .

2 System Model for T C M
Fjgurc  1 is a simplified block diagram of system un-

der Invest igat ion.  Input  bi ts ,  b~, occprrmg  at a rate &,
are passed throu  h a .trcllis encoder with code rate r, pro-

2ducmg  an enco ed blt  s t r e a m  cm at a rate, R, = r&.
These encoded bits, cm are converted to a sequence, u~ =

)kYAawA’ca%:  AT?rec?ik?h:’:i%:idfiii!i
continuous phase  encoder’ (fl~PE) (7], where the state of
NCPE, N denoted by Vm. The output IS mapped mto  an
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Figure 1: Block Diagram of the Trellis Coded A’on-coherent
N-consecutive M-ary  CPFSK system

iV-consecutive  M-ar CPFSK  waveform. This generation of
2“C P F S K  1s explame  m [71.

We assume that an arbitrary phase offset,. tl~,  introduced
by the channel during. the reception of u~ 1s constant and
uniformly distributed m [0, 27r). Furthermore the sequence
of random yarlables  are assumed to be .mde endent$  (This

1’assumption 1s valid lf mterleavin  and deln~er eavm 1s used
after trellis encoder and before fhe Viterb~ algorit  m1! ]. At
the receiver, the noise corrupted signal is non-coherent y ~e-
tected, and the resultin com uted metrics, denoted b @’j  1,

%Eare then used for the ~anc values of jhe $rellis. for co-
herent detecjlon, a metric b=ed. on mmlmlzmg  the squared
Euchdean distance between received and transrmtted  wave-
forms, is optimum in the sense of a minimum probability of
error-  sequence. For non-coherent detection, by the suitable
modlficatlon, the ap ro riate metric can be inter reted as
an equivalent norma~ze$ squared distance (ENSDf?

We denote a coded symbol  sequence of length L corre-
sponding to the output sequence of trellis encoder, u =
(urJ,  ul,..., uL_ l), where the m + 1st element of u is Um =
(Um,o,  Urn,,,..., ?Jm,N_,). The state of NCPE, Vm , a n d
the input vector, u~, which specify a transmitting N-
consccutive  M-ary CPFSK  waveform during the mth time
interval [ m TN, (m -t- I)’TN)  where TN = NT and T is t h e
duration of each coded symbol. The complex received base-
band signal ;(t) can be represented aa ~(~ + mT’)  = 3(T -t-
mTN,  u~)ejom + ii(r) where

;(T + m?’N,  u-) ~ .~eJe N(’+mTN’”’”) (1)

and
2xum  “ ,

( ~7j if o<~<~l
‘“” ,-’1

~=o Um,  k +  ~~(T  -  W,ON(.  +rn~N,um)  : {  ‘if=:~  < . <  ( i +  I)T, (2)

\ fori=l,2,...,l  -l.

Observe that if we assume  non-coherent detection the haae
%“information WI1l not b ~exist at the receiver. The ‘Viter 1 al-

t
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. gorithrn  can be implem@ed  with the same number of states

as required for the trelhs encoder.
The conditional probability of ?(t) over the interval

[0, (L – l)TN), given an input sequence of length L, u, and
carrier phase offsets, 00, dI, ..., dL _ 1, can be exprmaed  ss

~r(~(t)lU,80,81,...,  ~1)l) (3)

JTN= C ~ exp{-+ , I?(T -I- mT~)
mz=O

ii(7 + mTN, um)e iem IzdT}

which can be expressed in a simplified form

~r(i(t)/U,80,  th,..  .,81)l) (4)
= Ce -Aa LTN/NO

J
L T-

exp{-~
No o

I?(t)  ladt}

fiexP{j+lPmlcOs(om  ‘W,P)Io
m.o

where

/

TN

D ?(T + mTN)e ‘Je N(7+mTN, %)dT.
m = (5)

o
Averaging (5) over 00,01, ..., ~L-1,  (assuming interleaving

and deinterleaving is used) we get

P,(F(t)lu)  = F ‘~1  zo(~lptni),

m-O

(6)

where F is a constant which is independent of input sequence
u. An exact evaluation of (6) in a closed form is difficult if
not im~ossible.  To aet decision statistic which can be used to
imple;ent the Vite;bi algorithm, we have employed a simple
approximation of the modified Bessel function 10(z) for large
SNR as follows:

* Irllo(z) = 1X1.

Therefore the decision variable behaves
L-1

(7)

as

(8)
m.O

Thus, the appropriate decision rule for the coded sequence
u is the following:

choose ii = u“ as the coded sequence if (9)
L - 1

m.O

where u“ = (~~ u;,... ,U~_}). The decision metric in (10)
can also be use for no m er caving case which results m a
subopt:mum metric.

3 Evaluation of an Upper Bound
on the Bit Error Probability

An error event of length L can be described by considering
two L-tuples  of coded symbols. Let UL = (UO, UI, . . . UL_I)

denote transmitting Ltuple and UL = (do, dl, . . . . iiL_l)  de-
note another L tuple. Each component of UL and UL con-
sists of N coded symbols. An error event with length L
occurs when demodulator chooses, instead of transmitted
sequence UL, another sequence UL of channel symbols cor-
responding trellis path that splits from the correct path at
a given time, and remerges exactly L discrete times later,
The union bound provides the following inequality for the
bit error probability:

P(e) < +f’~~uLxOL  W(UL,  iiL)F’(UL)P(u  L + fiL) (10)

L-o

where P ( uL -+ ii ) is the pairwjse  eryor probability and
6b denotea the num er o{ mforrnatlon  bits transmltt!ng ev-

ery TN sec. and W(UL, UL) denotes the hammmg distance
between two binary sequences corresponding to I’L and UL.

To find the upper bound on bit error probability in (10),
we must first find the pairwise error probability which rep
resent the probability of choosing the coded  sequence fiL =
(til), til,..., tiL_l) instead of UL = (Uo,  ul, ., .,uL-l). Let
1~~ I denote the maximum likelihood metric for the m + 1st
trellis branch of the correct data sequence, computed from
(5). Then the pairwise error probability is given by

L-1 L-1

P,(UL + 6L) = P.(2 ]~ml > ~ lpmlluL). (11)
m=O m.O

Here, @~ I denotes the metric computed for the data se-
auence  rxwociated with the m+ 1st trellis branch of the incor-
rect path. To evalyate (11), we use a linear
Random variable ,& can be expressed as

J. = ATu(’”)  -I- riz,

where
● ’r.,

approximation.

(12)

u (m) = L
j

‘“ eje(r+mTM,Aum)~r
T o ? (13)

We denote the zero mean complex
&’&s~a\mra;d{~;;r~able,  fiz, as follows:

/

TN

iiz = ii(~ + mTJf)e-JeN(T+”’TN’fi’’’)  d~. ( 1 4 )
o

For large SNR we can make a linear approximation for ]~m I
as follows:

.—

4 U“iiz + U?i:~ ATIuI 1 +  “TIU12

= ATIuI +  Zlu, (-J-- U“ii’ +- Uii; ). (15)

Similarly approximation for /? I can be obtained by setting
Au. = ITO wh~ch results in u “’ = N and using this in the
above expression.

The statistic of ~~~~ 1~~ I – >j~~~ l/3~ I can be evaluated
approximately aa a Gaussian random variable. I)efine a new
random variable Y as

y ~ ~ [M - ~ 104 (16)
m-O m=O

2



● ✌

. “

Table 1: Set Partitioning of 2-consecutive Binary CPFSK
—

I.v.l Partitioaimc  A P.rtitiomimg  B ENSDe

~

-i..  ENSD

1 (o, 1) x (o, 1) (0,1) x (0,1) 1.45.1 .6S.4.0 1.45
2 0 x (o, 1) (0, 1) x o 1.63 1.63

1 x (0,1) (o, 1) x 1

Then Y can be ap roximated as a sum of independent-Gau~
sian rando
variance u~,Y?!t&M~o~~w~w ‘valuat’ the mean, Y, and! !

P= ‘~’ AT(N - Iu[m)l), (17)
m=O

and

u; = ‘~’ fvoT(jv - ]Jm)l).
m=O

Therefore we can rewrite (11) as

P,(UL + iiL) =  P,(y <  OIUL) (18)
AT~::; (N - @m)l) ,,

= Q(
No7’~::; (N - [u(m)!)

J= Q( ~ ~(iv- lu(m)I))
m.O

where
d:,m ~ 2(N - Iu(m)[). (19)

. The equivalent normalized squared distance, d~,m,  defined

‘n.i’g)’$
lays the same role as the normalized squared Eu-

ch can, .lstance of coherent detection for evaluating the error
probablhty  of the coded case as well as the uncoded case.

- 4 Design of Trellis Encoder
It is our goal in this section to design a trellis encoder

shown jn Figure 1 so. that we. can get the Qmallqst error
probabdlty. As we d~scussed  m the preyous  sect ion,  the
palrwlse  symbol error probability of trelhs coded se uences
can be expressed as a function of the accumul~ted?3NSD.
We define the equivalent squared free  distance , de,jre  which
plays the same roje aa t$e squared Euclidean free &stance
m coherent detection. d , ~e represents the smallmt value
of the accumulated ENS& between  sequencz~.  Therefore we
should find the encoder having the larg~t ~e,free. To pursue
this goal we use Ungerboeck’s set partltlonmg approach and
computer search.

4.1 2-consecutive Binary CPFSK with Modu-
lation Index 1/2

We use the set. partjtionin method for the set of wave-
forms of 2-consec@ve  b~nar~ C%FSK.  Each waveform IS de
noted by a two d]menslona  vector urn = (Uw,o,,urn,l). AS
shown m Table 1 we use two level of partltlonm ~. Each
subset is denoted by *the Cartesian product. T+he se of vec-
tors m level 1 1s partitioned mto 2 subsets of size 2.

Figure 2: General Representation of Trellis Encoder in Sys-
tematic Feedback Form with a Code Rate 1/2, Cascaded to
2CPE of Binary CPFSK

The generation of binary CPFSK is ex lained in two
stages, a 2-consecutive phase encoder 2CP

L

l?and a merno-
ryless  rnodula~or (MM as shown m Figure 2. There are two
binary input hnes ~n 2 PE. Therefore lt M posrdde  to design
a binary convolutional. encoder with a code rate 1/2, cas-
gaded with 2CPE. We Implement thlsm convol.utlonal  encoder
m s stematlc feedback form. We write an input sequence,
IJ1 (~), and. an output seguence,  c1 (D)  for j = O, 1,, in polyno-
mial notation, Here D 1s a dela  operator. The mformatlon
se uence 1s c1 (D) =
?i

bl(D) an~the ar~ty check sequence,
?~co D ~ is a function of Itself  and bl D . The parity check

equa lon of an encoder describes the re ation in time of the
encoded  bit streams. For an encoder with a code rate 1/2,
the parity check equation 1s

H(D)C(D)  = O(D) (20)

where

H(D) = [Hi(D), Ho(D)] (21)

is a parity matrix, and

C(D) = [C1 (~), Co(D)]’ (22)

is an output sequence vector. We define the gonstmint  length,
u, .to be the maxn-num  degree of all the parity check polyno-
mials HJ(D)  for j = O, 1.

To search for good codes we implement the parity check
polynomial m the following form:

H i ( D )  =  h: .D”+h:_lD”-l  +... -t-h; +O,
Ho(D) = h: .D”+h:.-lD”-l  +...+h~+  1 .  ( 2 3 )

We assi n level 2 subset in Set Partitioning A of Table 1 to
1!the pat s leaving the same state of the trellis correspond-

ing to the trellis encoder. This assignment ensures that the
Ei&D between paths leaving a iven state is at least 1.63.

fThis condition 1s implemented JY the connection between
~he outputs of the systematl$ convolutional encoder and the
inputs of 2CPE as follows: z to .zm,o and Z1 to z ,1. There-
fore the state of the rlg~t  most mernor
encoder 1s dec~ded by c as.shown  m ~:kz:?;::?lis1
and h; = O. Ttie exhau~tlve  search to find ‘the remam~ng
coefliclents  of H~ (D) ford = O, 1, to maximize the equivalent
sauared  frwe distance , d. ~..., has been made by means of a
c6m utch p r o g r a m .  ‘“’”~”

T~e  results are presented m Table 2 for the number of con-
volutional encoders with number of states ran es from 2 to 16

!’states, Only one so!ution  haa been reported. or CaS;S where
more than one trelhs encoder results m maximum de, f~ee. If
the ,Set Partitioning B m Table 1 is used, Jhe same results

ecl
are obtained with respect to, rna~mum de,jree ). We have

+
on] present when Set Partltlonm A was used.

so evaluate the performance of co ed systems, we use two
dommant terms m (10) to get an asymptotic upper bound

3
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Code Rate 1/2 Convolutional Encoder

.mmb.  r O( ,t.  t., v ‘ [ h ’  h ” ] d 2

e. free
2 1 [2 1] 3.258
4 2 5] 4.887
8 3 ;42 15] 6.341
16 4 (26 21] 7.970
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Fi ure 3: Asym totic Upper Bound on Bit Error Proba-
‘F f“bl lt and Simu atlon Results for 2, 4, 8, and .16 SJates

llel~s Coded S stems of Non-coherent 2-consecutive Binary
c?’CPFSK  with ode Rate 1/2

on bit error  probability. ~ith 2-state trellis encoder in Table
2, we obtain an asymptotic upper bound aa follows:

%.~*@(O.815;)  + Q(l.178N0 (24)

Observe that t, = l/2&b because the code rate is 1/2. With
4-3tate  trellis encoder in Table 2, we obtain an asymptotic
upper bound as follows:

~k2Q(l.223~)  + Q(l.541#). (25)
o

With 8-state trellis encoder in Table 2, we obtain an asymp-
totic upper bound as follows:

p& Q(l.585$ ) + 2Q(l.629~), (26)

and finally 16-state trellis encoder in Table 2, we obtain an
asymptotic upper bound as follows:

.
‘)+ 0.375 Q(2.2+.

‘*<2”5Q(1”993N0
(27)

Fi ure 3 shows as m totic u per bounds and simulation
5 ~J{fresu ts for 24,8 an 1 states rellis  coded non-coherent 2-

consecutive mary CPFSK. We can observe that squlation

~;i;l$!~y for Iar e S
roaches the aa m totlc up cr bound on blt error

d. $’he  dasf’ed  line represents the
asymptotic up;er %ound  on bit error probability of uncoded
non-coherent -consecutive C~FSK, by using an l-state r =
1 encoder. By employm  trellls  coding  with a code rate 1/2,
we obtain ower gains ~.5, 2.25,3.39 and 4.38 dB for 2,4,
8, and 16 s~ate~ respectively, based on the aa~mptotic upper
bounds at 10- blt error probablhty, at a.price of reducing
the information rate by half.. The dotted hne represents the
aa mptotlc blt error probabdlty of MSK (coherent binary
C~FSK with modulation index 1/2).

Table 3: Set Partitioning of 3-consecutive Binary CPFSK

f
1.”.1 I s., par,,,,.  mo. ~

1 (0, 1) x (0,  1) x (0, 1) / ,..0.?;:;.7., ! ““-]

4.2 3-consecutive Binary CPFSK with modu-
lation index 1/2

Table 3 shows a set partitioning for the set of waveforms
with 3-consecutive binary CPFSK  l:e. ~ = 2 and N = 3.
Each signal  is denoted by a three dimensional ~rector  u~ =
(u~,o,  Uw,l u~ .), where u~ i E {O, 1}. We write the set of
vectors m t’he Cartesian product. The set of eight vectors in
level 1 is successively partitioned into 2 and 4 subsets of size
4 and 2 respectively.

There are three binary input lines in 3CPE. Therefore it is
possible to design a binary convolutional encoder with a code
rate 2/3, cascaded with 3CPE. We implement this convolu-
tional encoder in systematic feedback form. We write the in-
put sequences, l?’ (D) for j = 1,2, and the output sequences,
& (D) for j = O, 1,2 in polynomial notation. Here D is a de
lay operator. The information sequences are @ (D) = 1?(D)
for j = 1,2 ,and the parity sequence, co (D), is a function of
itself and lP (D) for j = 1,2. The parity check equation of
an encoder describes the relation in time of the encoded bit
streams. For an encoder with a code rate 2/3, the parity
check equation is

H(D)C(D)  = O(D) (28)

where

H(D) = [H’(D), H’(D),  Ho(D)] (29)

is a parity matrix, and

C(D) = [C2(D),  C1(D), Co(D)]’ (30)

is an out ut sequence vector. We define the constmint  length
Ev to be t e maximum degree of all the parity check polyn-

mials HJ(D) for j = O, 1,2.
To seatc~ for ~ood codes we implement the parity check

polynomial in the following form:

H’(D) = h:D” + &.,D”-’  + . . . i- h; -t 1, -

H ’ ( D )  =  h: D”+h:-lD”-’  +  ...+hj -+0,

Ho(D) =  h:D” +h:_lD”-l + . ..+h. +1. (31)

We -i n each subset in level 2 in Table 3 to the paths
%leav@g t e same state of the trellis corresponding to the

ktrelhs encoder. This a.swgnment ensures that the E SD be-
tween paths leaving a given state is .at least 2.18. This con-
cl~tion is implemented by setting h; = 1 for “ = 0,2 and

/= O. Observe that subsets in level 2 are se ected  by the
v~lue of u ,0 @ u ,2. Therefore .the state of the ri ht most

fmemory e~ment o? the convolutional encoder IS se ected by
u~ o @u ,2 as shown in. Figure  4 where hl = O and j; = 1
for’j  = 0,~.  ‘I’he exhaustive search to find ~e ,remaml~g  co-
efficients  of H~ (D) for j = O, 1, 2, which maxlmlze  the d ,l,ee,
has been made by nleans  of a computer program. T~e ;e-
sults are presented m Table 4 for convolutional encoderwlth
the number of statea ranges from 2 to 16 states. Only one
solution haa been reported for ;aaea where more than one
trellis encoder with  maximum d,,,,ee was obtained.

4
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Figure4:  General Representation of Trellis Encoder inS S-
tematic Feedback Form with a Code Rate 2/3, Caac~ecl
with 3CPE of Binary CPFSK

Table 4: Optimal Code Rate 2/3 Convolutional Encoder

.vtnb.  r of mt. t.e v - [h’ h’ h’] d
=
e ree

(1 o 31 3.983
J

4 2 ~3 6 7’] 4.942
8 3 [11 4 9] 6.745
16 4 [19 8 131 7.965

To evaluate the performance of coded  systems we use two
dommant terms in (10) to get an upper bound on the bit
error. probabdlty. With 2-state trellis encoder m Table 4, we
obtain an asymptotic upper bound as follows:

P~<O.75Q(l.328~)  + Q(l.521;+). (32)

Observe that &, = 2/3&b because the code rate is 2/3. With
4-state trellis encoder in Table 4, we obtain an asymptotic
upper bound as follows:

~@.75Q(l.647~)  i- 0.5 Q(l.841&). (33)

With 8-state trellis encoder in Table 4, we obtain an asymp-
tetlc upper bound as follows:

~~<0.5Q(2,248~)  + 0.19 Q(2.374~). (34)

With 16-state trellis encoder in Table 4, we obtain an asymp-
totic upper bound as follows:

P& O.313Q(2.655:)  + 0.875 Q(2.762~). (35)

Fi ure 5 shows asymptotic up er bounds and simulation re-
? i’”su ts for 2,4,8 and 16 states tre @ coded 2-consecutive binary

CPFSK  systems. The dashed hne  ~e resents the as m totlc
up er bound on bl~ error

{ $
robabd!?~  of the ynco$e$non-

co erent 3-consecutive CP SK. wh!c 1s obtained by using
r = 1, l-state encoder. By employmg trellls codm with  a
code rate 2/3, we obtain ower gains 1.68, 2.63, !.97 and
4.69 dB. for 2, 4, 8, and lt?stat~ respectively based on the
asymptotic up er bounds at 1 0- bit error probability, but

“?
i

we lose the m ormation rate by 2 3. The dotted hne repre-
sents the as m totic bit error pro. abilit of MSK (coherent

JF? i“binar CP S with modulation index /2). Non-coherent
code~ scheme  with 8-state achieves better performance in
bit error probability than MSK at an expense of reducing
information rate by 2/3.

5 Discussion and Conclusion

‘0” I_––_––– “ “7
10’

. . . . .

10’

]

Z1O” %$4hI.n
b

., 2 ,IabO
i

10”
\
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10 ‘“ - 1

‘\ .

Figure 5: As mptotic U per Bound on Bit Error Probabil-

cyrf
it and Simu atlon Resu ts for 3-consecutive Binary CPFSK

ombined with Code Rate 2/3 Convolutional Encoder

MSK at an expense of reducing the informaticm  rate. by a
factor equal to the code rate. Furthermore we may achieve a
better system than coherent MSOK m bandwidth and power
efilc~ency b considering the trellls coding with 4-ary  or 8-ary

rCPFSK W1 h larger number of states.

A c k n o w l e d g m e n t s
This work w+ partially ~erformed  at the Jet Propulsion

Laboratory, Callforma Institute of Technology under, a, con-
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